

Course Title:	Mathematical	Physics-2
---------------	--------------	------------------

Course Code: PHYS26393

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7

A. General information about the course:

1. Course Identification

1. Credit hours:

2. Course type

Z . (Jourse type				
Α.	University	College 🗆	Department⊠	Track	Others
В.	Required 🖂	Elective			

3. Level/year at which this course is offered:

3

ed: 5th Level / 3rd year

4. Course general Description

This course covers a selection of advanced topics related to mathematical physics. Based on prior knowledge in mathematical science, the following topics are considered: the special functions, Fourier series, and Laplace transform.

5. Pre-requirements for this course:

MATH26223 Ordinary Differential Equations

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Recognize the fundamentals of special functions, Fourier series, and Laplace transform.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize the concepts of Laplace transform.	K.1		Written test
1.2	define the fundamentals of special functions.	K.1	Lectures Solve problems	Reports Homework
1.3	describe the orthogonal functions and Fourier series.	K.1		Quizzes
2.0	Skills			
2.1	Apply the concepts of Laplace transform.	S.4		Written test
2.2	Solve problems related to the special functions.	S.4	Lectures Solve problems.	Reports Homework
2.3	Solve problems in orthogonal functions and Fourier series.	S.4		Quizzes
3.0	Values, autonomy, and responsib	ility		
3.1	Exhibit self-learning skills independently.	V.2	Self-learning	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	The Laplace Transform1. Definition of the Laplace transforms.	4.5
2.	The Laplace Transform2. The inverse transforms and transforms of derivatives.	4.5
3.	The Laplace Transform3. Translation Theorems.	4.5

4.	The Laplace Transform 4. Additional operational properties.	4.5
5.	Special functions 1. Gamma function 2. Beta Function 3. Delta function	4.5
6.	Special functions 4. Bessel Functions	4.5
7.	Special functions 5. Legendre Functions	4.5
8.	Orthogonal Functions and Fourier Series 1. Orthogonal Functions.	4.5
9.	Orthogonal Functions and Fourier Series 2. Fourier series.	4.5
10.	Orthogonal Functions and Fourier Series 3. Fourier Cosine and Sine Series.	4.5
	Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

			Course L	earning O	utcomes		
	1.1	1.2	1.3	2.1	2.2	2.3	3.1
Topic 1	✓			✓			✓
Topic 2	✓			✓			✓
Topic 3	√			✓			✓
Topic 4	✓			✓			✓
Topic 5		✓			√		✓
Topic 6		✓			√		✓
Topic 7		✓			√		✓
Topic 8			✓			√	✓
Topic 9			✓			√	✓
Topic 10			✓			✓	4

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Advanced Engineering Mathematics, 6th edition, Dennis G. Zill & Warren S. Wright, Jones & Bartlett Learning, LLC, an Ascend Learning Campany, (2018).
Supportive References	 Mathematical Methods for Physics and Engineering, K. F. Riley, M. P. Hobson and S. J. Bence, (3rd Ed.), Cambridge University Press, (2006). Essential Mathematical Methods for Physicists, H. J. Weber and G.B. Arfken, Academic Press, (2003). Complex Variables and their applications, A.D. Osborne, (1999).
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms, Physics lab.
Technology equipment	Data show or smart board.
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

